On the volume of sets bounded by refinable functions

نویسندگان

  • Jan Hakenberg
  • Ulrich Reif
چکیده

We present a method for the precise determination of the volume of subsets of Rd which are bounded by a hypersurface parametrized by a set of refinable functions. The derivation is based on the linear refinement equations rather than on closed form expressions of these functions, which may not be available. In particular, our approach makes it possible to compute the area of planar domains bounded by subdivision curves or the volume of spatial domains bounded by subdivision surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Completeness in Probabilistic Metric Spaces

The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...

متن کامل

On lattice of basic z-ideals

  For an f-ring  with bounded inversion property, we show that   , the set of all basic z-ideals of , partially ordered by inclusion is a bounded distributive lattice. Also, whenever  is a semiprimitive ring, , the set of all basic -ideals of , partially ordered by inclusion is a bounded distributive lattice. Next, for an f-ring  with bounded inversion property, we prove that  is a complemented...

متن کامل

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

Local Linear Independence of Refinable Vectors of Functions

This paper is devoted to a study of local linear independence of refinable vectors of functions. A vector of functions φ = (φ1, . . . , φr) ∈ (C(IR))r is said to be refinable if it satisfies the vector refinement equation φ(x) = ∑ α∈Z s a(α)φ(2x− α), where a is a finitely supported sequence of r×r matrices called the refinement mask. A complete characterization for the local linear independence...

متن کامل

A construction of interpolating wavelets on invariant sets

We introduce the concept of a refinable set relative to a family of contractive mappings on a metric space, and demonstrate how such sets are useful to recursively construct interpolants which have a multiscale structure. The notion of a refinable set parallels that of a refinable function, which is the basis of wavelet construction. The interpolation points we recursively generate from a refin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 272  شماره 

صفحات  -

تاریخ انتشار 2016